Wavelet-based Denoising Methods. a Comparative Study with Applications in Microscopy
نویسنده
چکیده
This paper describes di erent methodologies for noise reduction or denoising with applications in the eld of microscopy. An in depth study on waveletand polynomial based denoising has been performed by considering standard test images and phantom tests with moderate and high levels of Gaussian noise. Di erent thesholding methods have been tested and evaluated and in particular a novel sigmoidal-type thresholding method has been proposed. In real applications, noise variance estimation problem becomes crucial because most of the thesholding estimators tends to overestimate this value. A comparison with the Hermite polynomial transform (HPT) and a modi cation of the HPT based in detecting the position and orientation of relevant edges has been accomplished. From this study one can conclude that both wavelet-based and polynomial-based denoising methods perform better than any other non-linear ltering method both in terms of perceptual quality and edge-preserving characteristics.
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملCan Wavelet Denoising Improve Motor Unit Potential Template Estimation?
Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...
متن کامل